% google get_hist_stock_data.m [hist_date, hist_high, hist_low, hist_open, hist_close, hist_vol] =get_hist_stock_data('AAPL','2010'); R_dollar=hist_close(2:end)-hist_close(1:end-1); R_pct=R_dollar./hist_close(1:end-1); % $ return Random Walk dT=1; %daily mu=mean(R_dollar); sigma=std(R_dollar); St=zeros(100,1); St(1)=560; for i=1:1:100 St(i+1)=St(i)+mu+sigma*sqrt(dT)*normrnd(0,1); end f1=figure(1); set(f1,'name','$ return Random Walk'); plot(0:100,St); % % return Ramdom Walk dT=1; %daily mu=mean(R_pct); sigma=std(R_pct); St=zeros(100,1); St(1)=560; for i=1:1:100 St(i+1)=St(i)*exp((mu-sigma^2/2)*dT+sigma*sqrt(dT)*normrnd(0,1)); end f2=figure(2); set(f2,'name','% return Random Walk'); plot(0:100,St); % % return Mean Reversion Factor Model dT=1; %daily mu=mean(R_dollar); sigma=std(R_dollar); St=zeros(100,1); St(1)=560; p=polyfit(hist_close(2:end),R_pct,1) % google get_hist_stock_data.m [hist_date, hist_high, hist_low, hist_open, hist_close, hist_vol] =get_hist_stock_data('USO','2010'); R_dollar=hist_close(2:end)-hist_close(1:end-1); R_pct=R_dollar./hist_close(1:end-1); days=100 % $ return Mean Reversion Factor Model dT=1; %daily mu=mean(hist_close); sigma=std(hist_close); St=zeros(days,1); St(1)=hist_close(end); b=regress(R_dollar,hist_close(2:end)); b k=-b; for i=1:1:days St(i+1)=St(i)+k*(mu-St(i))+sigma*normrnd(0,1); end f1=figure(1); set(f1,'name','$ return Mean Reversion Factor Model'); plot(0:days,St); % % return Mean Reversion Factor Model---see MR Factor Model
Thursday, June 21, 2012
Asset Pricing Model for simulation
There are two type of Pricing Model: Stochastic for Growth, Factor for Mean Reversion. In both case mu for $ return or % return or factors can be observed and used in Simulation
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment