Thursday, May 31, 2012
Monday, May 28, 2012
WPF 3 D Coordinate System with A Camera: Example
Then we can map 2D Texture to 3D using MeshGeometry3D <Viewport3D> <Viewport3D.Camera> <PerspectiveCamera Position="-20,46,0" UpDirection="0,0,1" LookDirection="4,-10,0" NearPlaneDistance="0"/> ...... <GeometryModel3D.Geometry> <MeshGeometry3D Positions="-10,-10,-10 10,-10,-10 10,10,-10 -10,10,-10 -10,-10,10 -10,10,10" TriangleIndices="0 2 3 0 1 2 0 4 3 4 5 3" TextureCoordinates="0,0 0,1 1,1 1,0" />
Saturday, May 26, 2012
Future Pricing and MR factor model
MATLAB code [hist_date, hist_high, hist_low, hist_open, hist_close, hist_vol] =get_hist_stock_data('SPX','2006'); Data=hist_close; [n,nn] = size(Data); R_dollar=hist_close(2:end)-hist_close(1:end-1); R_pct=R_dollar./hist_close(1:end-1); [b_int,nn,nn,nn,stats] = regress(R_pct,[ones(n-1,1),Data(1:(n-1),1)]); intercept = b_int(1); slope = b_int(2); if (slope > 0) error('Cannot use geometric mean reversion: pct chg=k*(mu-s)+sigma*dW requiring k>0)'); end sigma = sqrt(stats(4)); k = -slope; mu = -intercept/slope; days=20; dT = 1; St=zeros(days,1); St(1)=hist_close(end); for i=1:1:days St(i+1)=St(i)+(k*(mu-St(i))+sigma*normrnd(0,1))*St(i); end % future price dS/S = dLn(F(t))/dt *dt + signma*dW or % Ft-1=Ft*exp(-dS/S+signma*dW) Ft=zeros(days,1); Ft(end)=St(end); for i=days:-1:2 chg =(St(i+1)-St(i))/St(i); Ft(i-1)=Ft(i)*exp(-chg+sigma*normrnd(0,1)); end f1=figure(1); set(f1,'name','%-Return Mean Reversion Factor Model'); p=plot(0:days,St); set(p,'color','red'); hold on; p=plot(1:days,Ft); hold off;
Friday, May 25, 2012
Subscribe to:
Posts (Atom)